were not used for the structure refinement. The atomic scattering factors were taken from Hanson, Herman, Lea \& Skillman (1964). The absorption correction was not applied ($\mu R=0.43$).

$\bigcirc \mathrm{Pb}(1 / 4) \bigcirc \mathrm{Pb}(3 / 4) \quad \circ \mathrm{Ti}(1 / 4) \quad$ - $\mathrm{Ti}(3 / 4) \bigcirc 0(1 / 4) \quad$ O $0(3 / 4)$
Fig. 1. The structure of $\mathrm{PbTi}_{3} \mathrm{O}_{7}$ projected on to (010). The fractional y coordinates of the atoms are given in parentheses after the chemical symbols.

Discussion. Table 1 lists the atomic coordinates and thermal parameters, Table 2 the interatomic distances. Fig. 1 depicts the way in which the TiO_{6} octahedra are connected. The lead atom is surrounded by seven oxygen atoms, whereas the same atom in PbTiO_{3} has eight oxygen nearest neighbours. The $\mathrm{Ti}_{3} \mathrm{O}_{7}$ group forms a three-dimensional network instead of a sheet as in $\mathrm{Na}_{2} \mathrm{Ti}_{3} \mathrm{O}_{7}$ (Andersson \& Wadsley, 1961).

The calculations were carried out on the FACOM 270-20 of this Institute.

References

Andersson, S. \& Wadsley, A. D. (1961). Acta Cryst. 14, 1245-1249.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Tricarbonyl-1-syn-($1^{\prime}, 2^{\prime}$-dihydro-2'-oxo- 1^{\prime}-oxa-azulen- 3^{\prime}-yl)- h^{5}-pentadienylmanganese

By M.J.Barrow and O.S. Mills
Department of Chemistry, University of Manchester, Manchester, England

(Received 11 February 1974; accepted 13 February 1974)

Abstract

Monoclinic, $P 2_{1} / c, a=13 \cdot 249(5), b=7 \cdot 178(4)$, $c=15 \cdot 662(6) \AA, \beta=96 \cdot 66(3)^{\circ} . \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{5} \mathrm{Mn}, M=350 \cdot 2$, $Z=4, D_{c}=1.57 \mathrm{~g} \mathrm{~cm}^{-3}$. Tropone reacts with decacarbonyldimanganese to yield a tricarbonylmanganese complex. The molecules contain an approximately planar oxa-azulenone system with an open π-pentadienyl side chain to which is bonded a tricarbonylmanganese group. Formation of the ligand has involved a hydrogen-elimination reaction between two tropone molecules.

Introduction. The preparation of the title compound has been reported earlier (Barrow, Mills, Haque \& Pauson, 1971). The crystals, red monoclinic needles, were air-stable and unaffected by X-rays. Approximate cell dimensions were obtained from precession and Weissenberg photographs. The reciprocal lattice symmetry and systematic absences uniquely specified space group $P 2_{1} / c\left(C_{2 h}^{5}\right.$, No. 14). A crystal with dimensions $0.39 \times 0.13 \times 0.15 \mathrm{~mm}, \mu($ Mo $K \alpha)=9.46 \mathrm{~cm}^{-1}$, was selected for intensity measurements.

The intensities (for $\theta<25^{\circ}$) were collected on a Hilger and Watts computer-controlled single-crystal

four-circle X-ray diffractometer (Edwards, Bowden, Standeven \& Mills, 1966) with Zr -filtered Mo $K \alpha$ radiation and an $\omega / 2 \theta$ step-scanning mode. Orientation matrices were calculated by a least-squares method which utilized reflexion positions determined by a peakfinder program. Cell parameters were calculated, by the least-squares method, from the θ values of reflexions measured at both positive and negative $\omega / 2 \theta$ offsets. The intensities were corrected for Lorentz and polarization effects but not for absorption. 2592 independent reflexions were obtained; this analysis is based on the 1009 reflexions with $F>6 \sigma(F)$, where $\sigma(\mathrm{F})$ was derived from counting statistics. The large proportion of statistically non-significant reflexions was a consequence of an unusually large mosaic spread which gave rise to ill-defined diffracted beams of low peak height. Structure solution was by Fourier methods and refinement by least-squares methods to minimize $\sum w\left(F_{o}-\right.$ $\left.k\left|F_{c}\right|\right)^{2}$. All hydrogen atoms were located from difference syntheses. The positional coordinates of hydrogens $\mathrm{H}(4)$ and $\mathrm{Hx}(4)$ were refined whilst the other hydrogen atoms were placed at calculated locations, $[r(\mathrm{C}-\mathrm{H})=1.09 \AA]$. The temperature factors for the
hydrogen atoms were set equal to the isotropic values for the carbon atoms to which they are bonded. The paucity of statistically significant reflexions produced some restriction on the number of refined variables. In the end, anisotropic thermal parameters were included for those atoms where prior refinement had shown that thermal motion was significantly anisotrop-

Table 1. Atomic parameters with estimated standard deviations in parentheses

	x / a	y / b	z/c	$B\left(\AA^{2}\right)$
Mn	$0 \cdot 13984$ (15)	$0 \cdot 12358$ (27)	$0 \cdot 16326$ (13)	
$\mathrm{C}(1)$	$0 \cdot 0092$ (10)	$0 \cdot 1446$ (22)	$0 \cdot 1271$ (9)	
$\mathrm{O}(1)$	-0.0772 (7)	$0 \cdot 1569$ (15)	$0 \cdot 1053$ (7)	
$\mathrm{C}(2)$	$0 \cdot 1326$ (10)	-0.1112 (21)	$0 \cdot 1146$ (7)	
$\mathrm{O}(2)$	$0 \cdot 1243$ (9)	-0.2478 (15)	0.0833 (7)	
C(3)	$0 \cdot 1814$ (10)	$0 \cdot 2475$ (19)	0.0729 (9)	
$\mathrm{O}(3)$	$0 \cdot 2084$ (8)	$0 \cdot 3224$ (12)	0.0160 (6)	
C(4)	$0 \cdot 1555$ (12)	$0 \cdot 3950$ (23)	$0 \cdot 2300$ (9)	$4 \cdot 5$ (3)
C(5)	$0 \cdot 1132$ (9)	$0 \cdot 2592$ (19)	$0 \cdot 2800$ (8)	$3 \cdot 9$ (3)
C(6)	$0 \cdot 1528$ (9)	0.0821 (16)	$0 \cdot 2998$ (7)	$3 \cdot 8$ (3)
C(7)	$0 \cdot 2391$ (9)	$0 \cdot 0094$ (17)	$0 \cdot 2680$ (8)	$3 \cdot 4$ (3)
C(8)	$0 \cdot 3069$ (8)	$0 \cdot 1012$ (17)	$0 \cdot 2211$ (7)	$3 \cdot 3$ (2)
C(9)	$0 \cdot 3857$ (9)	$0 \cdot 0071$ (16)	$0 \cdot 1813$ (8)	$3 \cdot 1$ (2)
$\mathrm{C}(10)$	$0 \cdot 3981$ (9)	-0.1962 (16)	$0 \cdot 1797$ (8)	$3 \cdot 5$ (3)
$\mathrm{O}(4)$	$0 \cdot 3488$ (6)	-0.3255 (10)	$0 \cdot 1998$ (5)	
$\mathrm{O}(5)$	$0 \cdot 4881$ (6)	-0.2311 (10)	$0 \cdot 1429$ (5)	
C(11)	$0 \cdot 4640$ (8)	0.0780 (14)	$0 \cdot 1420$ (6)	$2 \cdot 5$ (2)
C(12)	$0 \cdot 5296$ (9)	-0.0683 (15)	$0 \cdot 1203$ (7)	$2 \cdot 9$ (2)
C(13)	$0 \cdot 6164$ (9)	-0.0690 (15)	$0 \cdot 0839$ (7)	3.0 (2)
C(14)	$0 \cdot 6693$ (9)	$0 \cdot 0838$ (17)	0.0552 (7)	$3 \cdot 7$ (3)
C(15)	0.6429 (9)	$0 \cdot 2676$ (18)	$0 \cdot 0541$ (8)	3.7 (3)
C(16)	$0 \cdot 5577$ (9)	$0 \cdot 3502$ (17)	$0 \cdot 0869$ (7)	$3 \cdot 7$ (2)
C(17)	$0 \cdot 4822$ (9)	$0 \cdot 2745$ (16)	$0 \cdot 1267$ (7)	$3 \cdot 2$ (2)
H(4)	0.221 (9)	$0 \cdot 436$ (14)	0.244 (7)	4.5
Hx(4)	$0 \cdot 112$ (9)	$0 \cdot 458$ (16)	$0 \cdot 198$ (7)	4.5
H(5)	$0 \cdot 0427$	$0 \cdot 2956$	$0 \cdot 3056$	3.9
H(6)	$0 \cdot 1141$	-0.0050	0.3429	$3 \cdot 8$
H(7)	$0 \cdot 2552$	-0.1372	0.2818	3.4
H(8)	$0 \cdot 3002$	0.2519	0.2139	$3 \cdot 3$
H(13)	$0 \cdot 6501$	-0.2053	$0 \cdot 0757$	$3 \cdot 0$
H(14)	$0 \cdot 7408$	0.0514	0.0305	$3 \cdot 7$
H(15)	0.6930	$0 \cdot 3624$	0.0246	$3 \cdot 7$
H(16)	0.5523	0.5008	0.0784	$3 \cdot 7$
H(17)	$0 \cdot 4287$	0.3721	$0 \cdot 1501$	$3 \cdot 2$

Anisotropic temperature coefficients in the form:

$t=\exp \left[-\left(h^{2} b_{11}+k^{2} b_{22}+l^{2} b_{33}+2 h k b_{12}+2 h l b_{13}+2 k l b_{23}\right)\right.$				
	b_{11}	b_{22}	b_{33}	
Mn	$0.00457(10)$	$0.0134(3)$	$0.00372(8)$	
$\mathrm{C}(1)$	$0.0068(10)$	$0.025(4)$	$0.0064(8)$	
$\mathrm{O}(1)$	$0.0066(7)$	$0.039(3)$	$0.0078(6)$	
$\mathrm{C}(2)$	$0.0080(11)$	$0.027(4)$	$0.0025(6)$	
$\mathrm{O}(2)$	$0.0167(12)$	$0.019(2)$	$0.0062(6)$	
$\mathrm{C}(3)$	$0.0068(11)$	$0.018(3)$	$0.0046(8)$	
$\mathrm{O}(3)$	$0.0138(10)$	$0.018(2)$	$0.0057(6)$	
$\mathrm{O}(4)$	$0.0071(6)$	$0.0095(18)$	$0.0057(5)$	
$\mathrm{O}(5)$	$0.0057(6)$	$0.0091(16)$	$0.0049(5)$	
	b_{12}	b_{13}	b_{23}	
Mn	$-0.00011(28)$	$0.00124(7)$	$0.00006(23)$	
$\mathrm{C}(1)$	$-0.0019(20)$	$0.0014(8)$	$-0.0007(17)$	
$\mathrm{O}(1)$	$-0.0003(15)$	$0.0003(6)$	$0.0052(13)$	
$\mathrm{C}(2)$	$-0.0018(21)$	$0.0008(6)$	$0.0022(16)$	
$\mathrm{O}(2)$	$-0.0035(16)$	$0.0005(7)$	$-0.0042(10)$	
$\mathrm{C}(3)$	$-0.0001(16)$	$0.0014(8)$	$0.0019(13)$	
$\mathrm{O}(3)$	$0.0014(12)$	$0.0048(6)$	$0.0041(9)$	
$\mathrm{O}(4)$	$-0.0011(9)$	$0.0015(5)$	$0.0009(7)$	
$\mathrm{O}(5)$	$-0.0000(9)$	$0.0008(4)$	$-0.0008(7)$	

ic as judged by the values of the e.s.d.'s. Scattering factors were taken from Hanson, Herman, Lea \& Skillman, (1964); that for manganese was corrected for the real part of the anomalous dispersion effect (Cromer, 1965) by addition of a constant, +0.36 e, over the whole range of $\sin \theta$. The final weighting scheme was $w^{-1}=$ $1+0.0037\left(F_{o}-50\right)^{2}$. The final R was 6.6%.* Atomic parameters are given in Table 1, and bond lengths and angles in Table 2. The labelling of the atoms is shown in Fig. 1 .

Discussion. This analysis continues our investigations into the structural chemistry of complexes formed by the reactions of tropone with transition-metal carbonyls (Barrow \& Mills, 1971). In the present analysis, the ligand, which has clearly been formed from two tropone molecules, is bonded to a $\mathrm{Mn}(\mathrm{CO})_{3}$ fragment by an open-chain pentadienyl system. Formation of the ligand has left one tropone molecule essentially intact whilst the other has undergone cleavage, probably to an open-chain ketene intermediate, before addition to the first molecule to yield an α, β-unsaturated γ-lactone. The reaction involves the loss of one hydrogen atom and the migration of another to what eventually becomes the terminal methylene group.

The $\mathrm{C}-\mathrm{C}$ distances unambiguously locate the single and double bonds in the essentially planar oxa-azulene portion of the ligand. In the 7 -membered ring, the double bonds have rotated cyclically by one atom with respect to tropone itself (Barrow, Mills \& Filippini, 1973). The conformation and bond lengths in the α, β unsaturated γ-lactone entity are similar to those reported for 1-oxa-azulan-2-one (Sasada, 1959), and unlike those in saturated γ-lactones where puckered rings

[^0]Table 2. Molecular geometry
(a) Intramolecular distances (\AA) with estimated standard deviations in parentheses

$\mathrm{Mn}-\mathrm{C}(1)$	1.76 (1)	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 44$ (1)
$\mathrm{Mn}-\mathrm{C}(2)$	1.85 (2)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.47 (2)
$\mathrm{Mn}-\mathrm{C}(3)$	1.81 (1)	$\mathrm{C}(9)-\mathrm{C}(11)$	$1 \cdot 37$ (1)
$\mathrm{Mn}-\mathrm{C}(4)$	$2 \cdot 21$ (2)	$\mathrm{C}(10)-\mathrm{O}(4)$	1.20 (1)
$\mathrm{Mn}-\mathrm{C}(5)$	$2 \cdot 14$ (1)	C(10)-O(5)	1.41 (1)
$\mathrm{Mn}-\mathrm{C}(6)$	$2 \cdot 15$ (1)	$\mathrm{O}(5)-\mathrm{C}(12)$	$1 \cdot 36$ (1)
$\mathrm{Mn}-\mathrm{C}(7)$	$2 \cdot 14$ (1)	$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 43$ (1)
$\mathrm{Mn}-\mathrm{C}(8)$	$2 \cdot 30$ (1)	$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 34$ (2)
$\mathrm{Mn} \cdots \mathrm{H}$ (4)	$2 \cdot 73$ (11)	$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 40$ (1)
Mn $\cdots \mathrm{Hx}(4)$	$2 \cdot 50$ (11)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.36 (2)
$\mathrm{Mn} \cdots \mathrm{H}$ (8)	$2 \cdot 36$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 42$ (2)
$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 16$ (1)	$\mathrm{C}(16)-\mathrm{C}(17)$	$1 \cdot 35$ (1)
$\mathrm{C}(2)-\mathrm{O}(2)$	$1 \cdot 10$ (2)	C(17)-C(11)	$1 \cdot 46$ (2)
$\mathrm{C}(3)-\mathrm{O}(3)$	$1 \cdot 13$ (1)	$\mathrm{C}(4)-\mathrm{H}(4)$	0.92 (12)
$\mathrm{C}(4)$ - $\mathrm{C}(5)$	1.41 (2)	$\mathrm{C}(4)-\mathrm{Hx}(4)$	$0 \cdot 84$ (11)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 40$ (2)	$\mathrm{C}(3) \cdots \mathrm{H}(4)$	$2 \cdot 99$ (11)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 40$ (2)	$\mathrm{C}(3) \cdots \mathrm{Hx}(4)$	2.72 (11)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 39$ (2)	$\mathrm{C}(3) \cdots \mathrm{H}(8)$	2.56
		$\mathrm{H}(4) \cdots \mathrm{H}(8)$	1.78

Table 2 (cont.)
(b) Intramolecu'ar angles with estimated standard deviations in parentheses

	$86 \cdot 8(6)^{\circ}$
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{C}(2)$	$84 \cdot 8(6)$
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{C}(3)$	$94.8(6)$
$\mathrm{C}(2)-\mathrm{Mn}-\mathrm{C}(3)$	$97 \cdot 6(6)$
$\mathrm{C}(4)-\mathrm{Mn}-\mathrm{C}(5)$	$37 \cdot 7(5)$
$\mathrm{C}(5)-\mathrm{Mn}-\mathrm{C}(6)$	$38 \cdot 1(4)$
$\mathrm{C}(6)-\mathrm{Mn}-\mathrm{C}(7)$	$38 \cdot 1(4)$
$\mathrm{C}(7)-\mathrm{Mn}-\mathrm{C}(8)$	$36 \cdot 3(4)$
$\mathrm{C}(4)-\mathrm{Mn}-\mathrm{C}(6)$	$70 \cdot 0(5)$
$\mathrm{C}(4)-\mathrm{Mn}-\mathrm{C}(7)$	$87 \cdot 7(5)$
$\mathrm{C}(4)-\mathrm{Mn}-\mathrm{C}(8)$	$80 \cdot 9(5)$
$\mathrm{Mn}--\mathrm{C}(1)-\mathrm{O}(1)$	$178 \cdot 3(13)$
$\mathrm{Mn}-\mathrm{C}(2)-\mathrm{O}(2)$	$176 \cdot 6(13)$
$\mathrm{Mn}-\mathrm{C}(3)-\mathrm{O}(3)$	$178 \cdot 8(12)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$126 \cdot 2(12)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$124 \cdot 2(11)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$128 \cdot 0(12)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$123 \cdot 4(11)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$124 \cdot 0(12)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	$130 \cdot 2(11)$

are found and where the bond lengths suggest contributions from valence-bond resonance hybrids such as

$$
\stackrel{\mathrm{O}^{-}}{\mathrm{C}-\mathrm{C}=+}{ }_{\mathrm{O}}^{\mathrm{O}}-\mathrm{C} .
$$

This analysis represents the first X-ray determination of an open-chain π-pentadienyl complex of manganese. The pentadienyl system is approximately planar, the whole being slightly twisted with respect to the remainder of the ligand; the C-C lengths, mean $1 \cdot 40 \AA$, are equal within experimental error. The manganese to carbon contacts vary systematically: the three central carbon atoms are equidistant $(2.14 \AA)$ from the

Fig. 1. Projection of the structure onto the least-squares plane through the ligand.

$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	$105 \cdot 7(11)^{\circ}$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(4)$	$134 \cdot 4(12)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(5)$	$106 \cdot 6(10)$
$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{O}(5)$	$119 \cdot 0(10)$
$\mathrm{C}(10)-\mathrm{O}(5)-\mathrm{C}(12)$	$110 \cdot 0(9)$
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	$10 \cdot 4(10)$
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(17)$	$125 \cdot 8(10)$
$\mathrm{C}(17)-\mathrm{C}(11)-\mathrm{C}(12)$	$123 \cdot 8(10)$
$\mathrm{C}(11)-\mathrm{C}(2)-\mathrm{O}(5)$	$107 \cdot 2(9)$
$\mathrm{O}(5)-\mathrm{C}(12)-\mathrm{C}(13)$	$120 \cdot 1(10)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$132 \cdot 7(11)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$12 \cdot 2(11)$
$\mathrm{C}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	$128.5(11)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$127 \cdot 7(12)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$131 \cdot 2(12)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(11)$	$127 \cdot 7(11)$
$\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$121(7)$
$\mathrm{Hx}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$114(8)$
$\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{Hx}(4)$	$121(11)$

metal whilst the terminal carbon atoms make longer contacts, $2 \cdot 21$ and $2 \cdot 30 \AA$. Untoward intramolecular $\mathrm{H} \cdots \mathrm{H}$ interactions are alleviated through a twisting of the terminal CH_{2} group out of the plane of the pentadienyl system by approximately 48°. The $\mathrm{Mn}(\mathrm{CO})_{3}$ group takes the same orientation with respect to the pentadienyl group as it does in the cyclic pentadienyl complexes tricarbonyl- π-cyclohexadienylmanganese (Churchill \& Scholer, 1969) and hexacarbonyl-transazulenedimanganese (Churchill \& Bird, 1968).

We thank Professor P.L. Pauson, who supplied us with a sample of the material, and the S.R.C. for a grant for diffraction apparatus. The computer programs used in the analysis were written by past and present members of the laboratory and we are grateful to them, especially to Mr R. L. Beddoes who has written many additional programs for the diffractometer.

References

Barrow, M. J. \& Mills, O. S. (1971). Chem. Commun. pp. 119-120.
Barrow, M. J., Mills, O. S. \& Filippini, G. (1973). Chem. Commun. pp. 66-67.
Barrow, M. J., Mills, O. S., Haque, F. \& Pauson, P. L. (1971). Chem. Commun. pp. 1239-1240.

Churchill, M. R. \& Bird, P. H. (1968). Inorg. Chem. 7, 1793-1801.
Churchill, M. R. \& Scholer, F. R. (1969). Inorg. Chem. 8, 1950-1955.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Edwards, D. B. G., Bowden, K. F., Standeven, J. \& Mills, O. S. (1966). Comput. Bull. 10, 54-57.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Sasada, Y. (1959). Bull. Chem. Soc. Japan, 32, 171-178.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30368 (11 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

